Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 61(41): e202211304, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-35981224

RESUMO

In this study, we describe a synthetic method for incorporating arenes into closed tubes that we name capsularenes. First, we prepared vase-shaped molecular baskets 4-7. The baskets comprise a benzene base fused to three bicycle[2.2.1]heptane rings that extend into phthalimide (4), naphthalimide (6), and anthraceneimide sides (7), each carrying a dimethoxyethane acetal group. In the presence of catalytic trifluoroacetic acid (TFA), the acetals at top of 4, 6 and 7 change into aliphatic aldehydes followed by their intramolecular cyclization into 1,3,5-trioxane (1 H NMR spectroscopy). Such ring closure is nearly a quantitative process that furnishes differently sized capsularenes 1 (0.7×0.9 nm), 8 (0.7×1.1 nm;) and 9 (0.7×1.4 nm;) characterized by X-Ray crystallography, microcrystal electron diffraction, UV/Vis, fluorescence, cyclic voltammetry, and thermogravimetry. With exceptional rigidity, unique topology, great thermal stability, and perhaps tuneable optoelectronic characteristics, capsularenes hold promise for the construction of novel organic electronic devices.

2.
J Am Chem Soc ; 142(6): 3024-3031, 2020 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-31948233

RESUMO

The direct and scalable electroreduction of triphenylphosphine oxide (TPPO)-the stoichiometric byproduct of some of the most common synthetic organic reactions-to triphenylphosphine (TPP) remains an unmet challenge that would dramatically reduce the cost and waste associated with performing desirable reactions that are mediated by TPP on a large scale. This report details an electrochemical methodology for the single-step reduction of TPPO to TPP using an aluminum anode in combination with a supporting electrolyte that continuously regenerates a Lewis acid from the products of anodic oxidation. The resulting Lewis acid activates TPPO for reduction at mild potentials and promotes P-O over P-C bond cleavage to selectively form TPP over other byproducts. Finally, this robust methodology is applied to (i) the reduction of synthetically useful classes of phosphine oxides, (ii) the one-pot recycling of TPPO generated from a Wittig reaction, and (iii) the gram-scale reduction of TPPO at high concentration (1 M) with continuous product extraction and in flow at high current density.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...